Physical properties

The physical properties library is able to handle multiple physical properties and models. Properties that will be initially supported are;

Andrade

Andrade equation for calculating the liquid viscosity

ln(η) = A + frac{B}{T} + C cdot ln(T)

Antoine

The Antoine equation is a vapor pressure equation and describes the relation between vapor pressure and temperature for pure components. The Antoine equation is derived from the Clausius–Clapeyron relation.

log(p) = A - frac{B}{C + T}

Antoine viscosity

Antoine equation for the viscosity

ln(η) = a + frac{b}{T+c}

Barin

Barin equations for thermophysical property data

G = a + b cdot T + c cdot (T cdot ln(T)) + d cdot T^2 + e cdot T^3 + f cdot T^4 + frac{g}{T} + frac{h}{T^2}

BWR

BWR-equation of state

p = R cdot T cdot d + (b0 cdot R cdot T - a0 ­ frac{c0}{T^2} cdot d2 + (b0 cdot R cdot T - a0) cdot d3 +a cdot α cdot d6 + (c cdot frac{d3}{T^2}) cdot (1 + γ cdot d2) cdot exp{(-γ cdot d2)}

Cragoe

Cragoe vapor pressure equation

log(p) = a + frac{b}{T} + c cdot T + d cdot T^2

DIPPR101

property = exp{(A + frac{B}{T} + C cdot ln(T) + D cdot T^E)}

DIPPR102

DIPPR equation for the gas viscosity at 0 atm pressure and the gas thermal conductivity

property = A cdot T frac{B}{1 + frac{C}{T} + frac{D}{T^2}}

DIPPR104

property = A + frac{B}{T} + frac{C}{T^3} + frac{D}{T^8} + frac{E}{T^9}

DIPPR105

Liquid density equation.

property = frac{A}{B^{(1 + (1 - frac{T}{C}))^D}}

DIPPR106

property = A cdot (1-T_r)^{(B + C cdot T_r + D cdot T_r^2)}

Tr = frac{T}{T{crit}}

DIPPR107

DIPPR equation for the ideal heat capacity

property = A + B cdot Bigg(frac{frac{C}{T}}{sinh(frac{C}{T})}Bigg)^2 + D cdot Bigg(frac{frac{E}{T}}{cosh(frac{E}{T})}Bigg)^2

Heat capacity (ASPEN)

[7]-equation for the solid heat capacity (page 3-102)

Cp = c1 + c2 cdot T + c3 cdot T^2 + frac{c4}{T} + frac{c5}{T^2} + frac{c6}{sqrt{T}}

Jones-Dole

Jones-Dole equation

frac{η}{η_0} = 1 + a cdot sqrt{c} + b cdot c

liquid viscosity (DIPPR)

DIPPR equation for the liquid viscosity

ln(η) = c1 + frac{c2}{T} + c3 cdot ln(T) + c4 cdot T^{c5}

mod.Antoine( Aspen)

modified Antoine vapor pressure equation ([7], page 3-80)

ln(p) = A + frac{B}{T+C} + D cdot ln(T) + E cdot T^F

mod.Antoine( Hysys)

modified Antoine vapor pressure equation (Hysys[9], page A-36)

ln(p) = A + frac{B}{T+C} + D cdot T + E cdot ln(T) + F cdot T^G

Peng-Robinson

standard Peng-Robinson equation of state ([7], page 3-34)

p = R cdot T/(v_m-b) ­a/[v_m cdot (v_m+b)+b cdot (v_m-b)]

Peng-Robinson-Boston-Mathias

Peng-Robinson-Boston-Mathias equation of state ([7], page 3­25)

p = R cdot T/(v_m-b) ­a/[v_m cdot (v_m+b)+b cdot (v_m-b)]

Polynomial

Polynomial function where x can be any property.

y = a + b cdot x + c cdot x^2 + ...+ n cdot x^n

Redlich-Kwong

Redlich-Kwong equation of state ([7], page 3-27)

a = frac{0.42748 cdot R^2 cdot T^{2.5}}{P_c}

b = frac{0.08664 cdot R cdot T_c}{P_c}

p = {frac{R cdot T}{v_m-b}} - {frac{a}{sqrt{T} cdot v_m cdot (v_m+b)}}

Redlich-Kwong-Aspen

Aspen modification of the Redlich-Kwong equation of state( [7], page 3-28)

p = frac{R cdot T}{v_m-b} - frac{a}{v_m cdot (v_m+b)}

with mixing rules

Redlich-Kwong-Soave

standard Redlich-Kwong-Soave equation of state ([7], page 3­35)

p = frac{R cdot T}{v_m-b} - frac{a}{v_m cdot (v_m+b)}

with mixing rules

Redlich-Kwong-Soave-Boston-Mathias

Redlich-Kwong equation of state with Boston-Mathias alpha function ([7], page 3-29)

p = frac{R cdot T}{v_m-b} - frac{a}{v_m cdot (v_m+b)}

with mixing rules

Riedel

Riedel vapor pressure equation

ln(p) = a - frac{b}{T} + c cdot T + d cdot T^2 + e cdot ln(T)

Riedel therm.cond.

Riedel equation for thermal conductivities

κ = a cdot (1 + 20/3 cdot (1 - frac{T}{T_{crit}})^frac{2}{3})

suface tension (DIPPR)

DIPPR correlation for surface tension

Tr = frac{T}{T{crit}}

σ = c1 cdot (1-T_r)^{(c2 + c3 cdot T_r + c4 cdot T_r^2 + c5 cdot T_r^3)}

thermal conductivity (NEL)

NEL equation for thermal conductivity

x=1-frac{T}{T_{crit}}

κ = a cdot (1 + b cdot x^frac{1}{3} + c cdot x^frac{2}{3} + d cdot x)

vapor pressure_1

vapor pressure equation

ln(p) = a + b cdot T + frac{c}{T} + frac{d}{T^2}

Wagner

Wagner vapor pressure equation

x = 1 - frac{T}{T_{crit}}

ln(frac{p}{p{crit}}) = frac{a cdot x + b cdot x^frac{3}{2} + c cdot x^3 + d cdot x^6}{frac{T}{T{crit}}}

Wagner2

2nd Wagner vapor pressure equation

x = 1 - frac{T}{T_{crit}}

ln(frac{p}{p{crit}}) = frac{a cdot x + b cdot x^frac{3}{2} + c cdot x^3 + d cdot x^7 + e cdot x^9}{frac{T}{T{crit}}}

Wagner3

Wagner vapor pressure equation

x = 1 - frac{T}{T_{crit}}

ln(frac{p}{p{crit}}) = frac{a cdot x + b cdot x^frac{3}{2} + c cdot x^3 + d cdot x^4}{frac{T}{T{crit}}}

Wrede

Wrede vapor pressure equation

log(p) = a - frac{b}{T}

Wrede-ln

Wrede vapor pressure equation

ln(p) = a - frac{b}{T}

Yuan/Mok

Yuan - Mok equation for the heat capacity

cp = a + b cdot exp{frac{-c}{T_n}}